The generator matrix

 1  0  0  1  1  1  1  1  1  1  3  1 X+3  1  1 2X  X  1  1 2X+6  1  1  1  1  1 X+3  1  1  1 X+3  1  1  1  1  3 2X+6  0  1  1  1  1  1 2X X+6  1  1 X+3  1  1  1  6  1  1  1  3  1  1 2X  1  1  3  1  1  3  1  1 X+3  1  1  1  1  3  1  X  1  X  6  1  1  1  1  1  1  1 2X+6 X+6  1  1 2X 2X+3 2X+6  1  1  1  1  1
 0  1  0  0  6 2X+4 2X+1 X+8 X+4 X+5  1  8  1 X+3  3  1  1  4  2  1  4 2X X+8  1 2X+5 2X  3 X+3 2X+8  1 2X+4  8 2X+2 2X+1  1  1 X+3 X+6 X+7 X+2 X+4 X+1  1  1  7 X+5 X+3  7  6  2  1 2X+3 2X+5 2X+2 2X+6  2  6  1  6 2X+6  1 X+4  8 X+6  X X+6  1 2X+1 X+8 2X+1 2X+6  1 X+1  0 2X+4  1  1  2  2 2X+5  5 2X+2 2X+5  3  1  1 X+3 2X  6  1  1 X+6  7 2X+8 2X X+8
 0  0  1 2X+4  2  5 2X+1  X X+3 X+2  4 X+1 2X+2  3 X+7  6 2X+1  0 2X+5  2  8 2X+8 2X+4  1  X  1 X+3 2X+1  2 X+1 X+5  3  7 X+7 X+5 2X+6  1  8  1  4 X+5 2X+3 X+4  8 2X  0  1 X+5 2X+3 X+8 X+3  3  7  5  1 2X+3 2X+8 2X+7 X+2  4  8 2X+4  2  1 X+5 2X 2X+4 X+6 2X+5 X+2 X+8 X+5  8  1 2X+6  3  8 2X+1  7 2X+1  0  0 X+2  7  5  X X+1  5  1 2X+4 X+6  1  5  8 2X+8  0
 0  0  0  3  3  3  3  3  3  3  0  3  0  3  3  0  0  6  3  0  3  0  6  0  0  3  6  0  6  3  0  6  0  6  3  6  6  6  6  0  6  3  6  6  0  0  6  6  0  0  0  3  6  0  6  6  3  6  0  0  6  3  6  3  0  3  6  6  0  3  6  6  0  3  3  6  0  3  6  0  0  6  6  0  0  3  0  3  0  3  3  3  6  6  3  0

generates a code of length 96 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 183.

Homogenous weight enumerator: w(x)=1x^0+966x^183+756x^184+1908x^185+3768x^186+2934x^187+3942x^188+5014x^189+4104x^190+4932x^191+5316x^192+3546x^193+3888x^194+4614x^195+2934x^196+2862x^197+2852x^198+1350x^199+1224x^200+1164x^201+396x^202+198x^203+238x^204+18x^205+56x^207+24x^210+36x^213+6x^216+2x^231

The gray image is a code over GF(3) with n=864, k=10 and d=549.
This code was found by Heurico 1.16 in 11.6 seconds.